Graph That Has a Local Maximum and is Not Continuous
Learning Objectives
- 4.3.1 Define absolute extrema.
- 4.3.2 Define local extrema.
- 4.3.3 Explain how to find the critical points of a function over a closed interval.
- 4.3.4 Describe how to use critical points to locate absolute extrema over a closed interval.
Given a particular function, we are often interested in determining the largest and smallest values of the function. This information is important in creating accurate graphs. Finding the maximum and minimum values of a function also has practical significance because we can use this method to solve optimization problems, such as maximizing profit, minimizing the amount of material used in manufacturing an aluminum can, or finding the maximum height a rocket can reach. In this section, we look at how to use derivatives to find the largest and smallest values for a function.
Absolute Extrema
Consider the function over the interval As Therefore, the function does not have a largest value. However, since for all real numbers and when the function has a smallest value, 1, when We say that 1 is the absolute minimum of and it occurs at We say that does not have an absolute maximum (see the following figure).
Definition
Let be a function defined over an interval and let We say has an absolute maximum on at if for all We say has an absolute minimum on at if for all If has an absolute maximum on at or an absolute minimum on at we say has an absolute extremum on at
Before proceeding, let's note two important issues regarding this definition. First, the term absolute here does not refer to absolute value. An absolute extremum may be positive, negative, or zero. Second, if a function has an absolute extremum over an interval at the absolute extremum is The real number is a point in the domain at which the absolute extremum occurs. For example, consider the function over the interval Since
for all real numbers we say has an absolute maximum over at The absolute maximum is It occurs at as shown in Figure 4.13(b).
A function may have both an absolute maximum and an absolute minimum, just one extremum, or neither. Figure 4.13 shows several functions and some of the different possibilities regarding absolute extrema. However, the following theorem, called the Extreme Value Theorem, guarantees that a continuous function over a closed, bounded interval has both an absolute maximum and an absolute minimum.
Theorem 4.1
Extreme Value Theorem
If is a continuous function over the closed, bounded interval then there is a point in at which has an absolute maximum over and there is a point in at which has an absolute minimum over
The proof of the extreme value theorem is beyond the scope of this text. Typically, it is proved in a course on real analysis. There are a couple of key points to note about the statement of this theorem. For the extreme value theorem to apply, the function must be continuous over a closed, bounded interval. If the interval is open or the function has even one point of discontinuity, the function may not have an absolute maximum or absolute minimum over For example, consider the functions shown in Figure 4.13(d), (e), and (f). All three of these functions are defined over bounded intervals. However, the function in graph (e) is the only one that has both an absolute maximum and an absolute minimum over its domain. The extreme value theorem cannot be applied to the functions in graphs (d) and (f) because neither of these functions is continuous over a closed, bounded interval. Although the function in graph (d) is defined over the closed interval the function is discontinuous at The function has an absolute maximum over but does not have an absolute minimum. The function in graph (f) is continuous over the half-open interval but is not defined at and therefore is not continuous over a closed, bounded interval. The function has an absolute minimum over but does not have an absolute maximum over These two graphs illustrate why a function over a bounded interval may fail to have an absolute maximum and/or absolute minimum.
Before looking at how to find absolute extrema, let's examine the related concept of local extrema. This idea is useful in determining where absolute extrema occur.
Local Extrema and Critical Points
Consider the function shown in Figure 4.14. The graph can be described as two mountains with a valley in the middle. The absolute maximum value of the function occurs at the higher peak, at However, is also a point of interest. Although is not the largest value of the value is larger than for all near 0. We say has a local maximum at Similarly, the function does not have an absolute minimum, but it does have a local minimum at because is less than for near 1.
Definition
A function has a local maximum at if there exists an open interval containing such that is contained in the domain of and for all A function has a local minimum at if there exists an open interval containing such that is contained in the domain of and for all A function has a local extremum at if has a local maximum at or has a local minimum at
Note that if has an absolute extremum at and is defined over an interval containing then is also considered a local extremum. If an absolute extremum for a function occurs at an endpoint, we do not consider that to be a local extremum, but instead refer to that as an endpoint extremum.
Given the graph of a function it is sometimes easy to see where a local maximum or local minimum occurs. However, it is not always easy to see, since the interesting features on the graph of a function may not be visible because they occur at a very small scale. Also, we may not have a graph of the function. In these cases, how can we use a formula for a function to determine where these extrema occur?
To answer this question, let's look at Figure 4.14 again. The local extrema occur at and Notice that at and the derivative At the derivative does not exist, since the function has a corner there. In fact, if has a local extremum at a point the derivative must satisfy one of the following conditions: either or is undefined. Such a value is known as a critical point and it is important in finding extreme values for functions.
Definition
Let be an interior point in the domain of We say that is a critical number of if or is undefined. We call the point a critical point of . Note that these two terms are often used interchangeably in this text and elsewhere.
As mentioned earlier, if has a local extremum at a point then must be a critical point of This fact is known as Fermat's theorem.
Theorem 4.2
Fermat's Theorem
If has a local extremum at and is differentiable at then
Proof
Suppose has a local extremum at and is differentiable at We need to show that To do this, we will show that and and therefore Since has a local extremum at has a local maximum or local minimum at Suppose has a local maximum at The case in which has a local minimum at can be handled similarly. There then exists an open interval such that for all Since is differentiable at from the definition of the derivative, we know that
Since this limit exists, both one-sided limits also exist and equal Therefore,
(4.4)
and
(4.5)
Since is a local maximum, we see that for near Therefore, for near but we have From Equation 4.4 we conclude that Similarly, it can be shown that Therefore,
□
From Fermat's theorem, we conclude that if has a local extremum at then either or is undefined. In other words, local extrema can only occur at critical points.
Note this theorem does not claim that a function must have a local extremum at a critical point. Rather, it states that critical points are candidates for local extrema. For example, consider the function We have when Therefore, is a critical point. However, is increasing over and thus does not have a local extremum at In Figure 4.15, we see several different possibilities for critical points. In some of these cases, the functions have local extrema at critical points, whereas in other cases the functions do not. Note that these graphs do not show all possibilities for the behavior of a function at a critical point.
Later in this chapter we look at analytical methods for determining whether a function actually has a local extremum at a critical point. For now, let's turn our attention to finding critical points. We will use graphical observations to determine whether a critical point is associated with a local extremum.
Example 4.12
Locating Critical Points
For each of the following functions, find all critical points. Use a graphing utility to determine whether the function has a local extremum at each of the critical points.
Checkpoint 4.12
Find all critical points for
Locating Absolute Extrema
The extreme value theorem states that a continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. As shown in Figure 4.13, one or both of these absolute extrema could occur at an endpoint. If an absolute extremum does not occur at an endpoint, however, it must occur at an interior point, in which case the absolute extremum is a local extremum. Therefore, by Fermat's Theorem, the point at which the local extremum occurs must be a critical point. We summarize this result in the following theorem.
Theorem 4.3
Location of Absolute Extrema
Let be a continuous function over a closed, bounded interval The absolute maximum of over and the absolute minimum of over must occur at endpoints of or at critical points of in
With this idea in mind, let's examine a procedure for locating absolute extrema.
Problem-Solving Strategy
Problem-Solving Strategy: Locating Absolute Extrema over a Closed Interval
Consider a continuous function defined over the closed interval
- Evaluate at the endpoints and
- Find all critical points of that lie over the interval and evaluate at those critical points.
- Compare all values found in (1) and (2). From Location of Absolute Extrema, the absolute extrema must occur at endpoints or critical points. Therefore, the largest of these values is the absolute maximum of The smallest of these values is the absolute minimum of
Now let's look at how to use this strategy to find the absolute maximum and absolute minimum values for continuous functions.
Example 4.13
Locating Absolute Extrema
For each of the following functions, find the absolute maximum and absolute minimum over the specified interval and state where those values occur.
- over
- over
Checkpoint 4.13
Find the absolute maximum and absolute minimum of over the interval
At this point, we know how to locate absolute extrema for continuous functions over closed intervals. We have also defined local extrema and determined that if a function has a local extremum at a point then must be a critical point of However, being a critical point is not a sufficient condition for to have a local extremum at Later in this chapter, we show how to determine whether a function actually has a local extremum at a critical point. First, however, we need to introduce the Mean Value Theorem, which will help as we analyze the behavior of the graph of a function.
Section 4.3 Exercises
90 .
In precalculus, you learned a formula for the position of the maximum or minimum of a quadratic equation which was Prove this formula using calculus.
91.
If you are finding an absolute minimum over an interval why do you need to check the endpoints? Draw a graph that supports your hypothesis.
92 .
If you are examining a function over an interval for and finite, is it possible not to have an absolute maximum or absolute minimum?
93.
When you are checking for critical points, explain why you also need to determine points where is undefined. Draw a graph to support your explanation.
94 .
Can you have a finite absolute maximum for over Explain why or why not using graphical arguments.
95.
Can you have a finite absolute maximum for over assuming a is non-zero? Explain why or why not using graphical arguments.
96 .
Let be the number of local minima and be the number of local maxima. Can you create a function where Draw a graph to support your explanation.
97.
Is it possible to have more than one absolute maximum? Use a graphical argument to prove your hypothesis.
98 .
Is it possible to have no absolute minimum or maximum for a function? If so, construct such a function. If not, explain why this is not possible.
99.
[T] Graph the function For which values of on any infinite domain, will you have an absolute minimum and absolute maximum?
For the following exercises, determine where the local and absolute maxima and minima occur on the graph given. Assume the graph represents the entirety of each function.
100 .
102 .
For the following problems, draw graphs of which is continuous, over the interval with the following properties:
104 .
Absolute maximum at and absolute minima at
105.
Absolute minimum at and absolute maximum at
106 .
Absolute maximum at absolute minimum at local maximum at and a critical point that is not a maximum or minimum at
107.
Absolute maxima at and local minimum at and absolute minimum at
For the following exercises, find the critical points in the domains of the following functions.
108 .
109.
110 .
111.
112 .
113.
114 .
115.
116 .
117.
For the following exercises, find the local and/or absolute maxima for the functions over the specified domain.
118 .
over
119.
over
120 .
over
121.
over
122 .
over
123.
over
124 .
over
125.
over
126 .
over
127.
over
128 .
over
For the following exercises, find the local and absolute minima and maxima for the functions over
129.
130 .
131.
132 .
133.
134 .
For the following functions, use a calculator to graph the function and to estimate the absolute and local maxima and minima. Then, solve for them explicitly.
135.
[T]
136 .
[T]
137.
[T]
138 .
[T]
139.
[T]
140 .
A company that produces cell phones has a cost function of where is cost in dollars and is number of cell phones produced (in thousands). How many units of cell phone (in thousands) minimizes this cost function?
141.
A ball is thrown into the air and its position is given by Find the height at which the ball stops ascending. How long after it is thrown does this happen?
For the following exercises, consider the production of gold during the California gold rush (1848–1888). The production of gold can be modeled by where is the number of years since the rush began and is ounces of gold produced (in millions). A summary of the data is shown in the following figure.
142 .
Find when the maximum (local and absolute) gold production occurred, and the amount of gold produced during that maximum.
143.
Find when the minimum (local and absolute) gold production occurred. What was the amount of gold produced during this minimum?
Find the critical points, maxima, and minima for the following piecewise functions.
144 .
145.
For the following exercises, find the critical points of the following generic functions. Are they maxima, minima, or neither? State the necessary conditions.
146 .
given that
147.
given that and a is an integer.
Source: https://openstax.org/books/calculus-volume-1/pages/4-3-maxima-and-minima
0 Response to "Graph That Has a Local Maximum and is Not Continuous"
Post a Comment